PROPOSAL SUMMARY AND ROUTING FORM

Proposal Title: **EEET 390 – ADVANCED ELECTRONICS**

Initiating Unit or Individual: ROBERT MOST

Contact Person’s Name: ROBERT MOST e-mail: MOST@FERRIS.EDU phone: X3044

Date or Term of Proposal Implementation: 201008

- [] Group I - A – New degree/major or major, redirection of a current offering, or elimination of a degree, major or minor
- [] Group I - B – New minors or concentrations
- [] Group II - A – Minor curriculum clean-up and course changes
- [x] Group II - B – New Course
- [] Group III - Certificates
- [] Group IV – Off-Campus Programs

<table>
<thead>
<tr>
<th>Group/Individual</th>
<th>Signature</th>
<th>Date</th>
<th>Vote/Action *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Faculty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Faculty</td>
<td></td>
<td>3/16/10</td>
<td></td>
</tr>
<tr>
<td>Department Head / Chair</td>
<td></td>
<td>3/16/10</td>
<td></td>
</tr>
<tr>
<td>College Curriculum Committee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean</td>
<td></td>
<td>4/5/10</td>
<td></td>
</tr>
<tr>
<td>University Curriculum Committee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Affairs</td>
<td></td>
<td>4/5/10</td>
<td></td>
</tr>
</tbody>
</table>

* Support with Concerns or Not Support must include a list of specific concerns. Votes must be shown for faculty groups. Administrators check appropriate action taken.

To be completed by Academic Affairs

President (Date Approved) **Board of Trustees (Date Approved)** **President’s Council (Date Approved)**

VPAA

APR 5 2010

PROVOST
1. Proposal Summary
 (Summary is generally less than one page. Briefly: state what is proposed with a summary of rationale and highlights.
 Additional rationale may be attached.)

 This is a new course being offered; it does not replace or modify any existing course. As a continuation of EEET 211, advanced concepts in electronics design will be explored. Specific topics include DC/DC conversion, AC inverters, H-Bridge applications, PWM design in amplifiers (Class-D), motor speed control, power LED circuits, energy conversion/photovoltaic applications. Course will be offered in the third year fall semesters for EEET and CNS students.

2. Summary of All Course Action Required*

 a. Newly Created Courses to FSU:
 Prefix Number Title
 EEET 390 ADVANCED ELECTRONICS

 b. Courses to be Deleted From FSU Catalog:
 Prefix Number Title

 c. Existing Course(s) to be Modified:
 Prefix Number Title

 d. Addition of existing FSU courses to program
 Prefix Number Title

 e. Removal of existing FSU courses from program
 Prefix Number Title
3. Summary of All Consultations

<table>
<thead>
<tr>
<th>Form Sent (B or C)</th>
<th>Date Sent</th>
<th>Responding Dept.</th>
<th>Date Received & by Whom</th>
</tr>
</thead>
</table>

4. Will External Accreditation be Sought? (For new programs or certificates only)

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

If yes, name the organization involved with accreditation for this program.

5. Program Checksheets affected by this proposal.

It affects both the EEET and ECNS check sheets for the third year fall semesters.
CREATE NEW COURSE FORM F
Course Data Entry Form Create New Course
Rev. 07/23/07

I. ACTION TO BE TAKEN: CREATE A NEW COURSE
 Notes
 1. Complete each item in Section I and Section II.
 2. If this course is to be used as a prerequisite for other university courses, Form Fs that reflect the
 prerequisite change must be submitted for those courses as well.

 Term Effective (6 digit code only): 201008 Examples: 200801(Spring), 200805(Summer), 200808(Fall)
 Note: The first four digits indicate year, the next two digits indicate month in which term begins.

II. PROPOSED FOR NEW COURSE: Complete all sections a through r. See manual for clarification.

 a. Course Prefix: EE
 b. Number: 390
 c. Enter Contact Hours per week in boxes.
 LECTure 2 LAB 4 INDependent Study – Check (x) [] Practicum: [] Seminar: []

 d. Course Title: ADVANCED ELECTRONICS
 (Limit to 30 characters/spaces.)

 e. College Code: TE
 f. Department Code: EECN
 Credit Hours: Check (x) and enter maximum and minimum hours in boxes.

 g. Type: [] Variable [x] Fixed
 h. Minimum Credit Hours: 3 I. Maximum Credit Hours: 3

 j. May Be Repeated for Added Credit: Check (x) [] Yes [x] No

 k. Levels: Check (x) [] Undergraduate [x] Graduate [] Professional

 l. Grade Method: Check (x) [] Normal Grading [] Credit/No Credit only (Pass/Fail)

 m. Does proposed new course replace an equivalent course? Check (x) [] Yes [x] No

 n. Equivalent course: Prefix [] Number [] See instructions on Replacement courses.

 o. CATALOG DESCRIPTION – Limit to 75 words – PLEASE BE CONCISE.
 As a continuation of EEET 211, advanced concepts in electronics design will be explored. Specific
 topics include DC/DC conversion, AC inverters, H-Bridge applications, PWM design in amplifiers
 (Class-D), motor speed control, power LED circuits, energy conversion/photovoltaic applications.

 p. Term(s) Offered: Fall (See instructions for listing.) q. Max. Section Enrollment: 16

 r. Prerequisites/Co-requisites/Restrictions: (If none, leave blank.) Limited to 100 spaces.

UCC Chair Signature/Date: Academic Affairs Approval Signature/Date:

To be completed by Academic Affairs Office: - Standard & Measures Coding and General Education Code
 [] Basic Skill (BS) [] General Education (GE) [] Occupational Education (OC) [] G.E. Codes

Office of the Registrar use ONLY

Date Rec’d: Date Completed: Entered: SCACRSE SCADET SCARRES SCAPREQ

4
Course: EEET 390 ADVANCED ELECTRONICS

Credits: 3

Contacts: 2 Lecture, 4 Lab Hours per Week

Course Description: As a continuation of EEET 211, advanced concepts in electronics design will be explored. Specific topics include DC/DC conversion, AC inverters, H-Bridge applications, PWM design in amplifiers (Class-D), motor speed control, power LED circuits, energy conversion/photovoltaic applications.

Course Prerequisites: EEET 211 and EEET 222 (minimum 70 required on all prerequisites)

Student Learning Outcomes

Students satisfactorily completing this course will achieve/demonstrate...

1. Understand DC/DC converter concepts
2. Understand the operation of switching power supplies
3. Understand the concepts of buck and boost converters
4. Apply current limiting strategies to various circuits
5. Understand how to design Norton amplifier circuits
6. Apply H-Bridge concepts to motor control
7. Apply H-Bridge concepts to PWM
8. Apply PWM concepts to Power LED Drive
9. Understand Class-D PWM amplification
10. Understand Photovoltaic cells
11. Understand application and integration of Photovoltaics in smart grids
12. Understand theory of AC inversion
13. Understand battery technologies and charging strategies
Instructional Unit Topic Descriptions and Time Allocations

<table>
<thead>
<tr>
<th>NO.</th>
<th>UNIT TOPIC DESCRIPTION SUMMARY</th>
<th>LECTURE HOURS</th>
<th>LAB HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Buck/Boost Converter</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BJT Current Limit/Clipping Detector</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>DC/DC Converters</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>AC Inverters</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>Norton Amplifier</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>H-Bridge Analysis</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Class-D Amplifier</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>8.</td>
<td>Power LED Driver</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>9.</td>
<td>Battery Charging and Characterization</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>10.</td>
<td>Photovoltaic Analysis, Characterization and Integration</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>
Learning Outcomes for Each Instructional Unit

Upon Completion of each instructional unit, the learner will be able to satisfactorily:

| I. | Topic: Buck/Boost Converter
| | A. Analyze buck boost circuits
| | B. Design a buck boost circuit
| II. | Topic: BJT Current Limit/Clipping Detector
| | A. Formulate BJT current limiter
| | B. Design BJT current limiter
| III. | Topic: DC/DC Converters
| | A. Analyze DC/DC converter
| | B. Design a DC / DC converter
| IV. | Topic: AC Inverters
| | A. Calculate power loads with AC inversion
| | B. Analyze AC single and three phase inverter
| V. | Topic: Norton Amplifier
| | A. Calculate gain and impedance of Norton amplifiers
| | B. Design a Norton amplifier circuit
| VI. | Topic: H-Bridge Analysis
| | A. Analyze H-bridge circuit using mathematics
| | B. Apply H-bridge principles in design
| VII. | Topic: Class-D Amplifier
| | A. Analyze class-D parameters
| | B. Design a class-D amplifier
| VIII. | Topic: Power LED Driver
| | A. Apply PWM principles to LED drive
| | B. Design a power LED driver
| IX. | Topic: Battery Charging and Characterization
| | A. Apply battery charging principles to different battery chemistries
| | B. Design a battery charging circuit using specific strategies
| X. | Topic: Photovoltaic Analysis, Characterization and Integration
| | A. Apply photovoltaic parameters in characterization
| | B. Design charging circuits using PV technology
| | Final Examination - Application of I-X above

Page 3 of 5
(rev. 2008'02'26)
Minimum Required Student Laboratory Activities

| I. | Topic: Lab Safety Orientation
| | A. Apply safety principles to lab
| | B. Familiarization of safety features of lab |
| II. | Topic: Buck/Boost Converter
| | A. Analyze Buck / Boost converters
| | B. Design Buck / Boost converters |
| III. | Topic: BJT Current Limit/Clipping Detector
| | A. Analyze BJT Current Limit/Clipping Detector
| | B. Design BJT Current Limit/Clipping Detector |
| IV. | Topic: Norton Amplifier
| | A. Analyze Norton Amplifiers
| | B. Design Norton Amplifiers |
| V. | Topic: H-Bridge Analysis
| | A. Analyze MOSFET H-bridges
| | B. Analyze MOSFET H-bridges |
| VI. | Topic: MOSFET H-Bridge Motor Control Part I
| | A. Motor control with 2-N channel / 2 – P channel MOSFETS
| | B. Design with 2-N channel / 2 – P channel MOSFETS |
| VII. | Topic: MOSFET H-Bridge Motor Control Part II
| | A. Motor control with 4-N channel MOSFETS
| | B. Design with 4-N channel MOSFETS |
| VIII. | Topic: Class-D Amplifier Part I
| | A. Design of Class-D front end
| | B. Analysis of Class-D front end |
| IX. | Topic: Class-D Amplifier Part II
| | A. Design of Class-D PWM power stage
| | B. Analysis of Class-D PWM power stage |
| | Topic: Power LED Driver
| | A. Design of LED PWM power stage
| | B. Analysis of LED PWM power stage |
| | Topic: Battery Charging and Characterization Part I
| | A. Lead-Acid battery charging analysis
| | B. Lead-Acid battery charging design |
| | Topic: Battery Charging and Characterization Part II
| | A. Lithium-Ion battery charging analysis
<p>| | B. Lithium-Ion battery charging design |</p>
<table>
<thead>
<tr>
<th>Topic: Photovoltaic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Analysis of silicon based PV circuits</td>
</tr>
<tr>
<td>B. Design of silicon based PV circuits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic: Photovoltaic Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Integration of silicon based PV circuits</td>
</tr>
<tr>
<td>B. Smartgrid applications</td>
</tr>
</tbody>
</table>